NOLTR 49-52

A TIME-DEPENDENT ANALYSIS FOR QUASI-
ONE-DIMENSIONAL NOZZLE FLOWS WITH
VIBRATIONAL AND CHEMICAL
NONEQUILIBRIUM

693987

3

By
John D. Anderson, Jr.

MAY 1969 OCT 6 1968 |
il

UNITED STATES NAVAL ORDNANCE LABORATORY, WHITE OAK, MARYLAND

ATTENTION

This document has been approved for

public release and sale, its distribution
is unlimited.

NOLTR 69-52

o

R




G bo a oo biand Lo

NOLTR 69-52

A TIME-DEPENDENT ANALYSIS FOR
QUASI-ONE-DIMENSIONAL NOZZLE FLOWS WITH
VIBRATIONAL AND CHEMICAL NONEQUILIBRIUM

Presented by:
John D. Anderson, Jr.

ABSTRACT: A new technique is presented for the numerical solution
of quasi-one-dimensional, vibrational and chemical nonequilibrium
nozzle flows including nonequilibrium conditions both upstream

and downstream of the throat. This new technique is a time-
dependent analysis which entails the explicite finite-difference
solution of the quasi-one-dimensional unsteady flow equations in
steps of time, starting with assumed initial distributions
throughout the nozzle. The steady-state solution is approached

at large values of time. A virtue of the present time-dependent
analysis is its simplicity, which prevails from its initial physical
formulation to the successful receipt of numerical results. Also,
the present solution yields the transient as well as the steady-
state nonequilibrium nozzle flows. To exemplify the present analysis,
results are given for several cases of vibrational and chemical
nonequilibrium expansions through nozzles.
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A Time-Dependent Analysis for Quasi-One-Dimensional Nozzle Flows
With vibrational and Chemical Nonequilibrium

This report presents a new technique for the numerical solution of
quasi-one-dimensional nonequilibrium nozzle flows. The governing
equations and numerical approach are discussed in detail, and
results are presented for the cases of a calorically perfect gas,
vibrational nonequilibrium and chemical nonequilibrium.
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NOMENCLATURE
A = cross-sectional area, also symbol for atomic species
A' = A/A*
A* = area of throat
a, = reservoir frozen speed of sound )
a = frozen speed of sound, also a constant in expression for T
a' = a/ao
I specific heat per unit mass of mixture
Cvi = specific heat per mole of species i
D = dissociation energy per molecule
E, = internal energy per mole of species i, including the
heat of formation
| E;' = E;/Ej
E, = internal energy of the reservoir mixture
evib = vibrational internal energy per unit mass

' =
evi evib/RTo

h = Planck's constant
| k = Boltzmann constant
ij = forward reaction rate constant ,
kRj = reverse reaction rate constant; ij/kRj = Kg
Ke = equilibrium constant

characteristic length taken equal to length of nozzle
= molecular weight of mixture
pressure .

= general nonequilibrium variable in equation (5)

= gpecific gas constant of the mixture

® w a w 3 v
"

= universal gas constant

vi
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t = time
U =
t t/(L/ao)
T = temperature (translational)
: =
T T/To
U =
TD D/k
u = velocity
' =
u u/aO
\Y = ln u'
&i = rate of production of species i due to chemical reactions
x = distance along nozzle
x' = x/L
'/ = 1ln p'
o = mass fraction of atomic species in a dissociating gas

Y = cp/cv

= [ ]
Fi 1n ni

n. = mole-mass ratio of species i (moles of i per unit mass
of mixture)

'
ni t ni/no

No = mole-mass ratio of the reservoir mixture
! - ;
f ln(evib)
) = density
[]
l ; o = p/po
v = characteristic vibrational frequency
T = vibrational relaxation time

H = T/(L/ao)

¢ = ln T'
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Subscrigts

il = chemical species i
o = reservoir conditions
A = atomic species
A2 = diatomic species
f Superscript
j = collison partner in equation (14)

s o e s it

viii




NOLTR 69-52

INTRODUCTION

Because of the practical importance of high-temperature flows
through rocket nozzles and high-enthalpy aerodynamic testing
facilities, intensive efforts have been made during the past
decade to obtain relatively exact numerical solutions for the
quasi-one-cdimensional expansion of a high-temperature gas through
a convergent-divergent nozzle when vibrational and/or chemical
nonequilibrium conditions prevail within the gas both upstream
and downstream of the throat. (See for example, Refs. 1-6, 10-13,
23-25.) All of these nonequilibrium solutions involve steady-
state analyses, and are by no means trivial; however, the
evolution of such efforts has produced adequate and sophisticated
techniques for the analysis of nonequilibrium nozzle flows.

An authoratative discussion of these steady-flow techniques can
be found in Ref. 1.

The purpose of the present paper is to present a new,
alternative approach for the numerical solution of quasi-one-
dimensional nonequilibrium nozzle flows. This new technique is
a time-dependent analysis which entails the finite-difference
solution of the quasi-one-dimensional unsteady equations of change
in steps of time. For specified equilibrium reservoir conditions
and a fixed-nozzle shape, the physical gas-dynamic properties
are obtained in steps of time, starting with assumed distributions
throughout the nozzle. The steady-state solution is approached

at large values of time.

SPPS:
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The present time-dependent analysis considers vibrational
and chemical nonequilibrium conditions both upstream and downstream
of the nozzle throat; the proper steady-state critical mass flow
is automatically approached at large values of time. 1In addition,
no oscillations and instabilities occur in regions of near
equilibrium flow, no special.procedures are required to start the
solutions from equilibrium reservoir conditions, and very large
spacings between grid points can be employed throughout the
entire nozzle. (Accurate solutions have been obtained for
convergent-divergent nozzles with area ratios of 10 using as few as
15 grid points beginning at the reservoir.) Also, the present
method readily handles simultaneous rate processes involving very
slow and very fast reactions.

The main virtue of the present time-dependent technique is
its simplicity. The governing conservation equations are
directly solved by a simple, explicit finite-difference scheme.
The technique requires no additional mathematical methods to
overcome special difficulties that can occur in the analysis
of nonequilibrium flows. (See Ref. 1 for a detailed discussion
of these difficulties.) Also, the present technique lends itself
to particularly simple programming for a digital computer.
Consequently, the simplicity of the present technique prevails
from its initial physical formulation to the successful receipt of
numerical results.

A second virtue is that the present technique yields the

transient as well as the steady-state nonequilibrium nozzle flows.




NOLTR 69-52

A transient solution is of interest in its own right; for example,
the physical times required for the fluid dynamic and chemical

variables to approach their steady-state values can be assessed.

ANALYSIS

The physical problem treated in the present paper is that
of the quasi-one-dimensional motion of a high-temperature gas
expanding from equilibrium-reservoir conditions through a
convergent-divergent nozzle, where the expansion is rapid enough
such that vibrational and chemical nonequilibrium prevail locally
in both the subsonic and supersonic portions of the flow. (The
term "quasi-one-dimensional"” will be discussed in a subsequent
paragraph.) Vibrational and chemical nonequilibrium are the only
dissipation mechanisms assumed in the flow; the effects of thermal
conduction, diffusion and viscous dissipation are assumed to be
negligibly small. The equilibrium reservoir conditions and
nozzle shape are specified, and a solution is sought for the

steady-flow distribution of p, u, T, p, e and chemical composi-

vib
tion in the x direction along the nozzle (see Fig. 1). The unique
aspect of the present analysis is that a time-dependent approach
is used to obtain the steady-state nonequilibrium nozzle flow
variables.

The crux of the present analysis is as follows: For specified

equilibrium reservoir conditions and a fixed-nozzle shape, initial

values of the flow-field variables p, u, T, €vib and chemical

o

5 o oL i
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composition are assumed at equally spaced grid points along the
x-axis, as shown in Figure 1. If all flow-field variables are

known at time t, then at each interior grid point new values can

be obtained at time (t + At) from the first three terms of a Taylor's

series expansion in time,

2 2
glt + At) = g(t) + (3D at + (=D _(Ag) (1)
t ot

where g signifies 1ln p, ln u, 1n T, ln(evib), and 1ln Ny and At

is a small increment in time chosen to satisfy certain stability

criteria discussed in a subsequent section. (For the present

numerical computations, the natural logarithms of the nondimensional

flow-field variable:c are employed as the dependent variables in

order to improve numerical stability, and a nondimensional time,

t', is employed in lieu of t in equation (1).) Starting with the

initially assumed gas-dynamic variables at t = 0, the flow field is

subsequently obtained in steps of time from equation (l). At

large values of time (after many time steps, usually on the order 1

of 700 or more) the steady-state flow field is obtained, where

%% and 23% both approach zero. For the present investigat:on !
ot

this steady-state solution is the desired result; indeed, the

purpose of the present report is to show that the time-dependent

approach is simply an advantageous means to the end.

w2
The time derivatives (%%) and (ﬁ—%) which appear in
t atl

equation (1) are obtained from :e unsteady quasi-one-dimensional

conservation equations (the independent variables are x and t).

These equations can be derived from the consideration of a fixed
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control volume in the flow; they do nct necessarily follow from the
general three-dimensional partial-differential equations of change
(formulated in any good text in gas dynamics, such as Ref. 14)
because of the physical inconsistency between the two assumptions

of one-dimensional flow and variable cross-sectional area (hence

the term "quasi-one-dimensional"). Nevertheless, the quasi-one-
dimensional equations are commonly used as a satisfactory approxima-
tion for the variation of flow properties through a nozzle; this

approximation becomes more accurate as the variation of A with x
becomes smaller. For a fixed A = A(x), the unsteady quasi-one-

dimensional equations are:

Continuity: A%% + ngﬁﬁl = 0 (2)
Momentum: p%% + pu%% = - %5 (3)
Energy: p%% + pu%% = - p%& - pugi%glﬁ (4)
Rate: %% + u%% = w(p, T, Q) (5)
State: P = OPRT (6)

where g denotes a nonequilibrium guantity such as e,ip °F chemical
composition, and w is a function which depends on the type of rate
process under consideration. Defining the following nondimensional
variables, p' = p/po, u' = u/ao, T! = T/Tc' x' = x/L, t' = t/(L/ao),
A' = A/A*, 2 = 1lnp', V=1nu', ¢ = 1ln T', where the subscript
zero denotes reservoir conditions, L is the length of the nozzle,

A* is the nozzle throat area, and a, = (YoRoTo)l/z is the reservoir

o

.
S FARN
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frozen speed of sound, and after replacing p in equation (3) with

equation (6), equations (2) and (3) become

32 _ _ ., 3(lnA") , 3V 22
TR b v el g - AR ra) (7}
V. _ _, T 3¢ 32 \ _ .., 8V

T = g G ) S v o (8)

o
(Note that equation (8) applies to a nonreacting gas, where R =
constant; for a reacting gas, where R is variable, equation (8)
is slightly modified, as shown in a subsequent section.)

In equations (7) and (8), all x-derivatives are calculated by
central finite differences obtained from the known flow field at
time t. Consequently, equations (7) and (8) directly yield (%%%
required in equation (1), where g = 2 and V; (33%) can be obtained

st ¢

by differentiating the same equations with respect to time.

2 2 2
322 _ . 2% 527 W . 932
s x5er * e * Gy Ge) (7a)
B e i ¢ ke + G+ 2528 - B
St yu' ' '3x7ot dX'ot X xY '3 x
32y IV BV
(8a)

- ul e toow W

However, the above additional time derivatives introduce cross
2
’ . ) . . : R
derivatives, §§§%' which can be obtained by differentiation of

equations (7) and (8) with respect to x'.

2 2 \ 2 2
3%z o i@nan | 9% Z) + (%z') (g_z') (7b)

ax 't ax' 8x'2 ax'

-
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2 2
32V _ T xD 9%z 3 az a¢ _
o Tl st s S s (32 + 57 (5 )
2 2
- w25+ (3 ) (8b)
ox'

To complete the formulation of the problem, the nondimensional
counterparts of equations (4) and (5) must be obtained. These
counterparts have a distinct form for each of the three cases
treated in the present paper, namely the cases of a calorically
perfect gas, vibrational nonequilibrium, and chemical nonequilibrium.
These forms are presented in the following sections.

Calorically Perfect Gas

By treating the case of a calorically perfect, nonreacting
gas (constant Y), results have been obtained which illustrate
the purely fluid dynamic behavior of the present time-dependent
analysis. For a complete formulation of this case, only the energy
equation needs to be considered in addition to equations (7) and

(8). With e = ch and Cor = R/(y - 1), the nondimensional form of

equation (4) is

9 3 ln A’
AT T TR ERUREURTE LI

Equation (9) d*rectly yields (3%) required in equation (1), where
2

i
oxot
are obtained by differentiating equation (9) with respect to t'

= ¢; as before, -—%' and the resulting cross derivative

and x' respectively.
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2 2
3¢ _ S O] 3V_, 3V oV_ 4 (ln A")
-——at'z = = (Y 1) u [axlatr + (axl) (atl) + TEY %' )
e (2 &) (9a)
ax'at! ax'’ 'ot!
2 2 2 2
3°¢ . L 35V AV 3 (ln A") oV, 3(lnA')
e - -y = 1) [Bx'2 toggm) = " (&) —5x7 )
32¢ 3V , ,9¢
=t [—78 5 + (537 (57) ] (9b)
xl

Vibrational Nonequilibrium

The present time-dependent analysis has been applied to the
vibrational nonequilibrium expansion of a pure diatomic gas.
These conditions are illustrative of many practical nozzle
applications where the reservoir temperature is high enough to
excite the vibrational energy mode, but not high enough to result
in noticeable dissociation of the gas. In addition, the vibrational
mode is assumed to be in equilibrium within itself but not in
equilibrium with the translational and rotational modes; i.e.,
a Boltzmann distribution is assumed to exist within the vibrational
mode. Consequently, a vibrational temperature T,ip POt necessarily
equal to the translational temperature T, can be defined. With

e = % RT + eyib’ equation (4) becomes

e, . de_,
oT _ 2 (_ , 3u _ 9(lna) _ 1 ““vib vib,, _ 3T
=5 l-Ty)-Tu 90X R tv —x)) - vk (10)
Defining e&ib = evib/RTo and 6 = ln(e&ib), the nondimensional form

of equation (10) is
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] L] '
3¢ _ _ 2 ,, 3V , 3(na") , Svib 26 . Y Cvib 3s ., 3¢
recp o grew B R B B S B

In the rate eguation, equation (5), g = e,ib and w is assumed to
be the relaxation equation for a harmonic oscillator. Therefore,

equation (5) becomes

de

; de_ .
vib  _ 1 _ _ vib
7t - T [evin) g™ Svipd T e (12)

where 1 is the vibrational relaxation time, T = f(p,T), and
(evib) is the equilibrium vibrational energy evaluated at the
€q

local translational temperature of the gas, = (hv/k)R/

(eVib) eq
[exp (hv/kT)-1). Defining 1' = 1/(L/ay), the nondimensional form

of equation (12) is

(eyip)
6 _ 1 eq _ - v 98
3T T TT t-?;;q 1] - ' v 20

Equations (11) and (13) directly yield o%%k for use in equation (1),
52

oxot
obtained by differentiation of equations (1l1) and (13) with respect

52
where g = ¢ and 6. As usual, values for (gz%) and are

to t' and x' respectively

)
32% s o2 23,3V v a(nAy v, |, Svib 3%
St ] dXx'ot' = ox' ot' ax' ot . U _Tat'
] []
,vib 26 90 30, “Cvib 3%
v Ger) e - e T TAT5CT
t []
» DSvib 36 30 av_ e 2%¢ , 30 v
A AR L T T L ox'at'  9x' ot'
(lla)
9

S
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2 2 2 2
2 3"V InA' L) oV
o = - 2w 2% s &%, XA, 200D AV
ax' ax'
e 2 u'e’'. 2
vib 376 v1b 26 3 vik 970
T osxoer T AT (ax - 30+ LI
u'e’. 2
vib 96 96 V. _ 3¢ 1 00 3¢ oV
+ ri1l axl (axT + ax l)} u (a , + 3xr axl)
- (11b)
3(e'..) (e'.,) (e!..)
3 ) _£-[ 1 vib eq _ vib eq 38 ; 1 : vib eq L 3T’
z P ] 1 ] ] ] 1
at' T €vib ot €vib vie (T')2 €vib :
Cur( e, 38 av e
ox'at' ax' ot'
d(e! ) (e!..) (e!..)
0 - J+ [ 1 ol eq _ e eq 96 ] il [ R eq _j) ot'
T T L LI v LE )
at'ox T €vib X evib ax ( ,)2 evib 9K |
2
_ an 08 36 9V
R A T Pl (13b)

These additional differentiations introduce new terms such

ae\'lib a(eVIb)e ot'
St ! T ! ¢ FET ¢ and the corresponding x'-derivatives.
]
®vib _ . 38
at! - Tvib 3t
]
®vib _ _, 38
oX" vib 9x"
3 ( v1b) (2% hv/kT)a% .y
L
ot (BV/KT_ ), 2
10
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2legip) () ? (GhV/KT) 20 g,
eq kT IxX
ox' B 2
(ehv/kT-l)
. _ _ br€
If vt is assumed to vary as tp = ae , then
ot'  _ c 99 _ 3¢ _ 32
ser = U (be TT g - 5T - o3
- R c 3¢ _ 93¢ _ 92
%’ ! (be T ~r = 537 TxT)
C \ . ot A
Finite-difference expressions for IET and % can also be

used, as discussed in a subsequent section.

Initial values at t = 0 are assumed for p, u and T. For
convenience, the initial values for €/ib in the subsonic and throat
regions are equilibrium values at the local assumed T, whereas at
some arbitrary point downstream of the throat €ib is usually set
equal to a constant for the remainder of the nozzle. Consequently,
the initial €,ib distribution is at least gqualitatively similar
to the actual steady-state nonequilibrium distribution.

Chemical Nonequilibrium

The present time-dependent analysis has also been applied to

the case of a nonequilibrium dissociating symmetrical diatomic gas

)
kp
2

3
kg

where Mj is a collision partner (catalytic body); in the present

application, M, = A, and M, = A. Also, chemical nonequilibrium

A, + Mj 2 2A + Mj (14)
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is the only rate process considered; the vibrational energy is
assumed to be in equilibrium with translation and rotation at the
local gas temperature. Hence, for simplicity, no attempt is
made to account for coupling between vibration and dissociation,
even though such coupling effects may be important in some

practical applications.l Letting subscript i denote a given

15

chemical species, e = Zi n Ei' where ni is the mole-mass ratio

i
(moles of species i per unit mass of mixture), Ei is the molar

internal energy of species i including its heat of formation, and

dEi = Cv dT. Also, the local frozen specific heat per unit mass
i

of the mixture is cy = Ei ny CV , and the local value of the
f i
specific gas constant is R =6?.):i n;. In terms of the above quantities,

equations (3) and (4) hecome

ou B0 L | op BE s BR 2
p-ﬁ+pu-.()—x— (pr+Tpax+TR8x (15)
an. an.
oT _ _,RT, du dlnA, _ 9T _ _u i _ 1 i
3t (cvf) Gx + v 5% ) X Cyg Li B 3x Cyg Li Bj 3%
(16)
and equation (5) becomes
an. an.
- "W - v gn (17)

where Wy is the rate of production of species i by internal chemical
q P g Ul — 'V = = '
reactions. Defining n; ni/no, E:i Ei/Eo and I‘i ln ng' where
g and Eo are the reservoir values of the mixture mole-mass ratio
and molar internal energy respectively, nondimensional forms of

equations (15), (16) and (17) are obtained as
12
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3V__ _.. 3V _ T R 3 3 (R/Rg) , R 32
tT u' o you' [Ro 5xT T Toax' T Ro %" (8}
E n
3¢ _ _ R v 0V 3lna’ - ) _ (.00 1 v
3t T T ¢ e * ox7 ) - W E%T (7 )(cv 7r) Ii By vy
£ SR 19)
and
8Fl Wi' BFl
— = [
W x H:r u 3;1- (20)
where, for the atomic species ]
Lp_n
Sz Vo= o0 ' (1) 1y 2 (2) ' '
o 2
2, 2
Lp_“n
- (9 _©° 1y 2 (1) ' (2) 3
( az ) (p") [kR (nA ) (nAz) + kp (nA )7 (21)

Note that the appearance of Yo in equation (18) is strictly due

to the arbitrary choice of a, = (YOROTO) 1/2 as a nondimensionalizing
quantity; Ya is the ratio of the frozen specific heats evaluated

at reservoir conditions and has no other significance in the present
formulation for a nonequilibrium chemically reacting gas.

Equations (18) through (21) directly yleld (51) for use in
equation (1) where g = V, ¢ and Pl,(——%o and -—fL are obtained

by differentiation of equations (18) through (20) with respect

to t' and x' respectively.

3% ., 3% 3G e "

ax'at’

3%y 3v 3V AV T

at': = - u'gpryer o e You' (G 5%m5%T * 3x7 3¢

+

2
+ G g—Tg—T %ZT %ET + (G -iT 8 + G g—r)(ggv

13
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% 2, v, . 2%y , 96 ac_, 2%
= T T es ¥ ]
9X'ot! ax,2 X YU 3x'2 ax' ox 8x'2
2
3z . 32 3G 3¢ _ 3V 3¢ 3G 37
+ G ax,2 o t (Bx' Bx')(G 5xt taxr Y G ax')]
(18b)
s = ' '
where G = R/R, mono<nA + nAZ)
2% . _ (Ryy 2V, @Y, 3lnat av
Y Cyg ox'ot" ax' ox' ot’
BCV 2
- w2V, 8lnA 1 MR __ R £) -t (b4 30V
ax" ox' Cye Ot' 2 ot' ox'ot' ox' at'
3 (Cvf)
E n aw. JE ! dc
1 i . i 3¢ 1 V§E :
= (=) (==mr) [L, (B} =pF + W) =27) -~ (v + F) (Z,E %)) ]
Toy ~ CugeT i*7i 9t i Gk Jt Cvg Jt 17171
(19a)
32% e (Ryu 2y, 2%at av 2w BV
x'ot Cvf 8x'2 ax‘2 ax! X’ X"
0Cy 2
- w3V, 3na, 1 3R _ R £y g0 (B2, 30 3V,
ox' S oX’ Cyg 0X' 2 ox' ) ax' 9x’
f (Cvf) 9X
E_n ow.! 3E, ey,
_( 00 1 ; i .y iy _ v 2y 490 1 f
(19b)
2 * 2
7T,y Wl aTy oAty 3, oy \
Py Il ¥ (57 - ¥ 527 -~ v Ggmer t 5T T (20a
i
2 ., 2
3 Fi 7 awi . BFi : d Pi BFi WV
X't ﬁ; (ax' - Wy ax') - R (Bx'z Tl Tl (20b)

14
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These differentiations introduce new terms such as TET ¢ T3eT !

sR Svg  BEy
SET ¢ 3EV ¢ FEv ¢ @S well as the corresponding x'-derivatives.

Straightforward but somewhat lengthy expressions for these terms

are derived as follows.

- : (1)
i PYC AL BTEE S
ot a, F "a; 53¢ ‘A, 3t
f an. ' (2)
R S N N .
F A, 3L A ot! A, A ot!
(1) 'y 2 (NS 0Z
2 :
L(p_n_) I an,'
_ 0o 12y, (1) w2 _ A2 N i
P—:;;———-](O ) %kR [(HA) —=g' t 2HA2 "A TET ]
. (1) S D a (2)
bt SR @) on? 2 03 KR
a’ Vay) It R 'a’ Tt A 3t
(1) ;. 2 ) (2) ,_ ,,3, 232
+ 20k (ny) (HAZ) + kgt n) 7] =
] 1
3R _ o "2 9NA
5tT "olzET * 3ET)
a ' an *
Cvg N . By INA7

where (%:—V) zth/kT
5 T
Cva, =7 Mt w2
3
CVA = }-R
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2 2
3E, . (v,2 hv/kT
2 = fR 2 3 3, K ]
3t E;° 3t' ‘27 T hv/kT_ |2

In the above, the electronic energy of each species has been assumed
negligibly small in comparison to the translational, rotational and
vibrational energy. This is a reasonable assumption for the
temperature range considered in the present results.

Following Reference 2, the reverse reaction rate constants

kél) and kéz) are assumed to vary as

S L
o
(2) _ d Jenin s (L)
kR = 35(T /TD)kR
(1)
e SN ¢ DRI T
5t = T~ s kgt (TN 7 3
(o]
R = 35 T R (1) 9¢
5eT i (g *+ kg 3¢7
ak(2)
Note that —3%7— = 0 when s = 1, Also, the forward reaction rate

constants ancd their derivatives are obtained from the relation
kF/kR = Ke(T), where Ke(T) is the equilibrium constant.

Initial conditions at t = 0 are assumed for p, u, and T. The
initial distribution for Na in the subsonic and throat regions is
obtained from a chemical equilibrium calculation using the local

assumed initial distributions of p and T, whereas at some arbitrary

16
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point downstream of the throat, Na is set equal to a constant for
the remainder of the nozzle. Consequently, in the same vein as
the vibrational nonequilibrium case, the initial Na distribution
is at least qualitatively similar to the actual steady-state
nonequilibrium distribution.

Comments on the Numerical Solution

Several comments are in order regarding the numerical behavior
of the present time-dependent method. First, in equations (7),
(8), (9), (11), (13), (18), (19) and (20), the x'-derivatives are

computed from central differences

227 - g(x'+4x')-g(x'=-Ax")

X 20x"T
329 - glx'+Ax')-2g(x')+g(x'-4x")
3 2 (Ax') 2

evaluated from the known flow field at time t'. Second, the initial
conditions appear to have no meaningful effect upon either the
stability or convergence of the technique; results have been
obtained for identical nozzles and reservoir conditions but with
widely different initial conditions, and in each case the same
steady-state solution was obtained. Also, second-order accuracy

as embodied in equation (1) appears to be absolutely necessary

for stability. Several attempts at first-order accuracy (using

the first two terms in equation (1)) met with instabilities for

both the calorically perfect gas and the nonequilibrium cases.
2
Hence, the second-order term involving é;% in equation (1) is

3
apparently necessary for convergence.

17
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Regarding the vibrational nonequilibrium case, the nonequilibrium
expansion of a mixture of gases may result in complicated expressions
for 1 as compared to the relatively simple variation assumed above.
Consequently, analytical expressions for %%; and %%; as presented
above may be extremely tedious, if possible at all. However,

experience with the present analysis has shown that these derivatives

can be approximated directly by the finite-difference expressions

Arty o e ereae)
ﬁ"'t.‘ At

(BT') T (XA ) =T (X' -AX")
), = SEx By

evaluated from the known flow field at times t' and (t'-At').
The use of these finite-difference expressions instead of analytical
] 1)
forms for D1 and élr results in less than a 0.2 percent change in
ot X
the final steady-state values for evib through the nozzle, and
no noticeable change at all in the other nozzle flow variables.
The time increment At appearing in equation (1) is chosen

at the end of each time step to satisfy both the Courant-Friedrichs-

Lewy stability criterion, where

Ax'
At' g T aT (22)

and a criterion geared to the speed of the nonequilibrium relaxation

process

At' < BY (23)

18
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where ¥ = 1' for vibrational nonequilibrium, ¥ = 53{ for chemical
nonequilibrium,15 and B is a proportionality constant, found
empirically to be approximately 0.2 for the present investigation.
Both criteria must be satisfied simultaneously because two
"relaxation”" processes prevail in the time-dependent flow as it
progresses towards the steady-state; a fluid dynamic relaxation
(egq. (22)) involving the propagation and interaction of compression
and expansion waves throughout the nozzle, and an internal physical-
chemical relaxation (eq. (23)) involving the finite rate processes
of vibrational energy and chemical composition changes.

Because of the central differences employed in the present
analysis, the flow-field variables at the first and last points
in the grid (see Figure 1) can not be directly obtained from
equation (l1). Instead, at the last point (nozzle exit) all the
flow properties (in terms of 2, V, ¢, etc.) are simply obtained
from linear extrapolation from the two previous internal points.
The first grid point (nozzle inlet) is considered to be effectively
in the reservoir, i.e., A/A* at this point is a large number,
usually greater than ten. Hence, values of p, T and p at this
point are assumed to be reservoir values and held fixed, invariant
with time. The flow velocity (in terms of V) at this point is
allowed to vary with time, and is found by linear extrapolation
from the second and third internal points. At large values of
time, the velocity at the inlet approaches its proper steady-state
value ( a very small but finite number), compatible with the proper

steady~state mass flow through the nozzle.

19
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As a general comment, the philosophy of the present analysis
is similar to the time-dependent solutions of the supersonic blunt-
body problem presented in References 16 and 17. Because the
unsteady gas-dynamic conservation equations are hyperbolic with
respect to time, the time-dependent method is admirably suited
for the unified analysis of mixed subsonic-supersonic flow fields.

Indeed, the expansion through a convergent-divergent nozzle is such

a case.

RESULTS

Using the present time-dependent analysis, numerical results
have been obtained on an IBM 7090 digital computer for the three
cases of a calorically perfect gas, vibrational nonequilibrium
expansion of diatomic nitrogen, and the chemical nonequilibrium
expansion of partially dissociated oxygen. Again, emphasis is
made that the desired results are the steady-state flow fields,
and that the present time-dependent analysis is an advantageous
means to that end. As schematically shown in Figure 1, the
computations are made at equally spaced grid points along the nozzle.
As few as 30 grid points are employed in a calculation; this is
a convenient number and does not represent a required minimum for
stability. Indeed, a virtue of the present time-dependenti analysis
is that relatively large spacings between grid points can be
employed throughout the nozzle, including the near equilibrium
subsonic region near the reservoir. In addition, using the present
time~dependent analysis for the case of vibrational nonequilibrium,

several numerical experiments have been performed to examine the

20

ORI, S A




NOLTR 69-52

effect of the shape (area distribution) of the subsonic nozzle
section on the resulting frozen vibrational energy at the nozzle
exit. For some practical reservoir conditions, the results show
a noticeable effect, as will be discussed in a subsequent section.

Calorically Perfect Gas

In order to investigate the purely fluid dynamic behavior of
the present time-dependent analysis, results have been obtained
for a calorically perfect gas with y = 1.4; some of these results
are illustrated in Figures 2 to 4. Starting with an initial
linear distribution, the transient profiles of T' through the
nozzle are shown at various time steps in Figure 2. Two important
points are noted from Figure 2: (1) At early values of time, the
profiles relax very rapidly to a steady-state distribution, and
(2) the resulting steady-state distribution shows excellent agree-

ment with known steady-state results obtained from Reference 18.

These results are complemented by the transient profiles of local

mass flow, puA, through the nozzle, as shown in Figure 3. The

somewhat wavy initial distribution for puA is a consequence of the
arbitrarily assumed initial distributions for p and u. Figure 3 "
markedly illustrates that the transient solution rapidly proceeds
to the proper steady mass flow, puA = constant. This aspect of

the present analysis is an important virtue when applied to i

nonequilibrium flows, as described in the following sections. i
Excellent agreement for the steady-state distributions of p and u

is also obtained, as siiown in Figure 4.

21




—

NOLTR 69-52

Vibrational Nonequilibrium

Figures 5 to 9 illustrate results obtained with the present
time-dependent analysis for the vibrational nonequilibrium
expansion of Ny For these results, the characteristic vibrational
relaxation time was assumed to vary as 1p = a[exp(-bT1/3)].
following Reference 11, With one exception, the present results
are obtained with a = 14.7 and b = 0.915, where p is in atm, T in
°K, and 1 in seconds. These values for a and b are fitted to the
vibrational relaxation times used in References 8 and 13, which
reflect the shock-tube data of Blackman.19 Of course, recent
experiments have shown that vibrational relaxation times measured
behind normal shock waves and subsequently used in equation (12)

are not appropriate for expanding flows,l'20

however, this does
not detract from the present results, which are intended to
illustrate the present time-dependent analysis and which are
compared with earlier analyses using Blackman's shock-tube data.

To illustrate the time-dependent behavior of the vibrational
nonequilibrium solution, Figure 5 shows the transient €y ib profiles
at various time steps; as in the previous case, a rapid approach
to the steady-state distribution is observed. This steady-state
distribution agrees with the results of a recent steady-flow
13

as shown in terms of Tv'

analysis by Wilson et al, i

p 1N Figure 6.
Both the present time-dependent analysis and the steady-flow
analysis of Reference 13 include nonequilibrium effects upstream
of the throat. The comparisons in Figure 6 are made for several

reservoir temperatures, and show very good agreement between the

time-dependent and steady-flow approaches; however, emphasis is
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again made that the present time-dependent results were obtained

in a straightforward manner, whereas the steady-flow analysis of
Wilson et al requires an iterative procedure as well as a forward
integration matched to an expansion about a singular point slightly
downstream of the throat.

For some practical reservoir conditions, nonequilibrium effects
upstream of the throat are noticeable and have a subsequent influence
on the frozen vibrational energy at the nozzle exit; these effects
are shown in Figures 7 to 9. Figure 7 compares results for

distributions of Tvib and 'I‘tr obtained with the present time-

ans
dependent analysis, which includes nonequilibrium effects upstream
of the throat, with the results obtained with a steady-flow analysis
by Harris and Albacete,7 which assumes local thermodynamic
equilibrium from the reservoir to the throat. For this comparison,

1/3

the constants in 1p = afexp(-bT )] are a = 0.077 and b = 0.576,

which are fitted to the quantum mechanical calculations of Widom.21
Two important points are obtained from the comparison shown in
Figure 7: (1) the present results show a noticeable departure

from equilibrium flow upstream of the throat as reflected by the
difference between Ttrans and Tvib and (2) these upstream neon-
equilibrium effects result in a higher frozen Tvib at the nozzle
exit in comparison to the results of Reference 7. For the
reservoir conditions shown in Figure 7, the vibrational energy is

a relatively small fraction of the internal energy of the gas.

lience, the differences in Tvib between the two analyses are not

paralleled by similar differences in Ttrans’ indeed, good agreement

23
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is obtained for T In addition, good agreement is also

trans’
obtained for p and u as shown in Figure 8. The upstream
nonequilibrium effects are accentuated at lower pressures, as
markedly shown in Figure 9. Here, the present results are compared
with the steady-state analysis of Erickson,8 which like that of
Reference 7 assumes equilibrium flow to the throat. The results,
which are given in terms of local nonequilibrium vibrational energy
non-dimensionalized by the reservoir equilibrium value, again
illustrate the effect of nonequilibrium conditions upstream of the
throat, particularly for the lower value of Py Consequently,
Figures 7 and 9 demonstrate the importance of treating nonequi-
librium effects upstream of the throat when solving the nonequi-
librium nozzle flow problem. 1In contrast to a steady-flow
approach, the present time-dependent analysis handles such effects

in a straightforward manner.

Influence of Subsonic Area Distribution

The fact that significant nonequilibrium conditions can
prevail upstream of the throat prompts the following question:
What 1s the effect of the shape (area distribution) of the subsonic
section on the resulting frozen vibrational energy at the nozzle
exit? In order to examine this question, several numerical
experiments hove been performed using the present time-dependent
technique. Figures 10 and 11 reflect some results from these
experiments in which vibrational temperature distributions are

compared for two nozzles with different subsonic sections but

identical supersonic sections. These nozzles are shown schematically
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in Figure 10; the composite nozzle exhibits a greater subsonic area
change near the throat than the purely hyperbolic nozzle. Figure 10

shows only a small difference in frozen Tvib at the nozzle exit

for a reservoir pressure of 80 atm. However, Figure 11 shows that
at a lower pressure of 10 atm a considerable difference in frozen
vibrational temperature is obtained and this difference appears

to be relatively insensitive to the reservoir temperature.
Consequently, for practical reservoir conditions, some tailoring
of the frozen vibrational energy at the nozzle exit can be
accomplished by proper design of the subsonic section.

Chemical Nonequilibrium

Figures 12 to 17 illustrate results obtained with the present
time-dependent analysis for the case of the chemical nonequilibrium

expansion of partially dissociated oxygen

3
Kp

o, + Mj Z 2 0 + M,

3
kR

where M1 = 02 and M2 = 0, The reaction rate constants and nozzle
shape are taken identical to those of Hall and Russo,l’2 where

(1) _ (1) (2) ,, (1) _ _ .
kR = kRo (TO/T), kR /kR = 35 T/TD, TD = D/k, D is the

dissociation energy per molecule, and ij/kRj = Ke' For the
present results, the eguilibrium constant, L is obtained from .
Wray22 as K, = (1.2 x 103)'1"1/2 exp(-118,000 /RT) , where Ke is in |
moles/cm3 and T in °K. Also in the present results the

vibrational energy is assumed to be in the local thermodynamic

equilibrium at the local gas temperature.
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Figure 12 illustrates the transient profiles of atom mass
fraction o at various time steps, where o = pi/p = nimi. As in
the previous cases, a continuous approach to the steady state is
observed. However, in comparison with Figures 2 and 5 from the
previous cases, Figure 12 shows that the steady state for the
chemical nonequilibrium case is obtained after considerably more
time steps. This behavior is due to the small values of At
dictated by equation (23) for the present chemical nonequilibrium
conditions; this contrasts to the previous results for the
calorically perfect gas and vibrational nonequilibrium cases,
where the minimum At came from equation (22) and where the values
of At were an order of magnitude larger than the present chemical
nonequilibrium case. Also in Figure 12, the resulting steady-
state distribution is compared to the results obtained from the
steady-flow analysis by Hall and Russo;2 very good agreement is
obtained. (Note that a slight discrepancy occurs with the
equilibrium reservoir mass fraction, Qg which can be attributed
to slight differences in Ke between the two sets of results.)

Whereas the results shown in Figure 12 are computed for

Po 9.4 atm, Figures 13 to 17 show results obtained for

) 82 atm, where equilibrium conditions are more closely

o

approached, hence providing a more stringent test for the stability
of a nonequilibrium flow analysis. Figure 13 shows the variation
of a at the nozzle exit as a function of time; the steady-state

o is approached at large values of time. Figures 14 to 17

exit

show results obtained with the present time-dependent analysis

26
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for the steady-state a, T, p and p distributions, respectively
(plotted versus nozzle area ratio). These results are compared
with the results of Hall and Russo, obtained from a steady-flow
analysis. Very good agreement is obtained; however, emphasis
is agyain made that the present results are obtained in a
straightforward manner, whereas the steady-state analysis of
Reference 2 reguires an iterative procedure due to the unknown
critical mass flow, and employs an asymptotic series solution
for the flow at large areas upstream of the throat for starting

the forward integration.

CONCLUSIONS

In summary, the following conclusions are made: (1) A new,
alternative solution for quasi-one-dimensional nonequilibrium
nozzle flows is presented. A virtue of this new technique is
its simplicity, which prevails from its initial physical
formulation to the successful receipt of numerical results.
Consequently, the time-dependent technique appears to warrant
consideration for future applications in nonequilibrium nozzle
flows. (2) Because in some practical cases nonequilibrium
conditions prevail upstream of the throat, the shape of the
subsonic section can have a noticeable effect on the frozen

vibrational energy at the nozzle exit.
Parenthetically, it should be noted that the present time-

dependent results always converged to the supersonic solution

downstream of the throat; a purely subsonic solution was never

observed. This situation was due to the choice of initial values
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which were in qualitative agreement with a supersonic solution
(i.e., low exit values of density and temperature, and high

values of velocity).
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TIME -DEPENDENT ANALYSIS

e ®  NACA 1135 (REF.18)
A/A* =1+2.2 (x=1.5)2

P/Po

0 1.0 2,0 3.0

DISTANCE ALONG NOZZLE, x

FIG. 4 STEADY-STATE PRESSURE AND VELOCITY DISTRIBUTIONS
FOR A CALORICALLY PERFECT GAS; COMPARISONS OF
THE PRESENT TIME - DEPENDENT ANALYSIS WITH RESULTS
OBTAINED FROM REFERENCE 18,

ufa,
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l y =x/L + 0,15

A/A* = 20 (0,15 - 033768675y | 3+ 0.10129268 y 12
10,26794919y)  FOR y Z 0.017899

A/A* =20 (0,09791353 - y) FOR y <= 0,01786%99

b71/3
Tp = ae ;a 14,7, b=0,753
5 %
; o]
T, - 5000 °K
4
| T, = 4000 °K

3
! To = 3000 °K.\'—-—r—-—.

VIBRATIONAL TEMPERATURE, Ty g, CK x1073)

2 |- TIME-DEPENDENT ANALYSIS
PS STEADY STATE ANALYSIS OF WILSON et al (REF. 13)
Po 10atm
L L - 0.0254 m
| 5 L | N R R R
-0.5 0 0.5

DISTANCE ALONG NOZZLE, x/L

FIG. 6 STEADY-STATE Ty, g DISTRIBUTIONS FOR THE NONEQUILIBRIUM
EXPANSION OF Ng; COMPARISON OF THE PRESENT TIME-
DEPENDENT ANALYSIS WITH THE STEADY-FLOW ANALYSIS OF
REFERENCE 13,
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TIME-DEPENDENT ANALYSIS
®pp,

U Qa4

}STEADY FLOW ANALYSIS (REF, 7)

Por Tor T, A’A%, SAME AS FIG. 7

P/Po

DISTANCE ALONG NOZZLE, x/L

FIG. 8 STEADY-STATE PRESSURE AND VELOCITY DISTRIBUTIONS FOR THE
NCNEQUILIBRIUM EXPANSION OF Np; COMPARISON OF THE

PRESENT TIME~DEPENDENT ANALYSIS WITH THE STEADY-FLOW
ANALYSIS OF REFERENCE 7,
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VIBRATIONAL TEMPERATURE, (°K) x 103
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CODE:
HYPERBOLIC NOZZLE

— == COMPOSITE NOZZLE
4.5 |— L, a, b SAME ASFIG. 10

3.5 — AT =63 oK
{
2.2 |
. -—\
2.1 T, = 2200 °
Po ~ 10 atm T — — — ——
2.0 —
1.9 AT =56 °K
0# | | | | I | | | 1 l | | L1
-0,5 0 0.5

DISTANCE ALONG NOZZLE, x/L

FIG. 11 COMPARISON OF Ty g DISTRIBUTIONS FOR TWO NOZZLES WITH
DIFFERENT SUBSONIC SECTIONS BUT IDENTIC4L SUPERSONIC
SECTIONS; po = 10 atm, NONEQUILIBRIUM EXPANSION OF N2,
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kp, 5.98 x 1014 cm® MOLE2-SEC
i 1.6 — A A 1360k L2
Po 82 atm
0.9 R T, 5900 °K
’ L 0.0228m
. 0.8 [—
= W7 —®
z\ .
O
0 0.6
<
o
w
20,5
<
p:
3 04 |- EQUILIBRIUM = T~ ~__ __
0 ‘@, 0.693D -~ —.
—
<
0.3 |~
TIME-DEPENDENT ANALYSIS
0.2 (a_, 0.7019
. o]
HALL AND RUSSO; STEADY
0.1 |- STATE ANALYSIS; REF. 2 @_ 0,693
| | 2 2] 4 6 3 10
; A A

FIG. 14 STEADY-STATE ATOM MASS FRACTION DISTRIBUTION FOR
THE NONEQUILIBRIUM EXPANSION OF DISSOCIATING
OXYGEN; COMPARISON OF THE PRESENT TIME-DEPENDENT
ANALYSIS WITH THE STEADY -FLOW ANALYSIS OF REF, 2




NON-DIMENSIONAL TEMPERATURE, T T,
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EQUILIBRILIM
@, 0,93

\
= —
S

po 82 a'm
T, 5900 °K
L 0.0228 m
AA* 136 L2

kp, 3.98 x 10'% cm® MOLE2-SEC

TIME-DEPENDENT ANALYSIS ¢ @ 0.7019

e HALL, RUSSO; STEADY STATE ANALYSIS;
REF.2 « a 0.693)

o]

FIG

A AY

. 15 STEADY-STATE TEMPERATURE DISTRIBUTION FOR THE NON-
EQUILIBRIUM EXPANSION OF DISSOCIATING OXYGEN;
COMPARISON OF THE PRESENT TIME-DEPENDENT ANALYSIS
WITH THE STEADY-FLOW ANALYSIS OF REF. 2




P.Po

NON-DIMENSIONAL DENSITY:
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TIME-DEPENDENT ANALYSIS
(@, =0.7019

o HALL AND RUSSO; STEADY
STATE ANALYSIS; REF. 2

. a 0.4931

[¢]

Po oZ ulm

T, 900 °K
i L 0.0228 m
AA 136 L2
1072 | | I N I | |
100 10!
A A*

FIG. 16 STEADY-STATE DENSITY DISTRIBUTION FOR THE NON-

EQUILIBRIUM EXPANSION OF DISSOCIATING OXYGEN;
COMPARISON OF THE PRESENT TIME-DEPENDENT
ANALYSIS WITH THE STEADY-FLOW ANALYSIS OF REF,2




NON-DIMENSIONAL PRESSURE: p/p,,

NOLTR 69-52

10°
TIME-DEPENDENT ANALYSIS (@ = 0.7019)
@  HALL AND RUSSO; STEADY STATE
ANALYSIS; REF. 2 (@, = 0.6931)
10-1
Po = 82 atm
i T, = 5900 °K
L =0.0228 m
A/A* =1 + 36 (x/L)2
1072 1 L | |
100 10!

A/Ax

FIG. 17 STEADY-STATE PRESSURE DISTRIBUTION FOR THE NON-
EQUILIBRIUM EXPANSION OF DISSOCIATING OXYGEN;
COMPARISON OF THE PRESENT TIME-DEPENDENT ANALY-
SIS WITH THE STEADY FLOW ANALYSIS OF REF. 2
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